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Preface

Introduction

This book describes and presents the source code for the common reference implementation of
TCP/IP: the implementation from the Computer Systems Research Group (CSRG) at the University of
California at Berkeley. Historically this has been distributed with the 4.x BSD system (Berkeley
Software Distribution). This implementation was first released in 1982 and has survived many
significant changes, much fine tuning, and numerous ports to other Unix and non-Unix systems. This
is not a toy implementation, but the foundation for TCP/IP implementations that are run daily on
hundreds of thousands of systems worldwide. This implementation also provides router functionality,
letting us show the differences between a host implementation of TCP/IP and a router.

We describe the implementation and present the entire source code for the kernel implementation of
TCP/IP, approximately 15,000 lines of C code. The version of the Berkeley code described in this text
is the 4.4BSD-Lite release. This code was made publicly available in April 1994, and it contains
numerous networking enhancements that were added to the 4.3BSD Tahoe release in 1988, the
4.3BSD Reno release in 1990, and the 4.4BSD release in 1993. (Appendix B describes how to obtain
this source code.) The 4.4BSD release provides the latest TCP/IP features, such as multicasting and
long fat pipe support (for high-bandwidth, long-delay paths). Figure 1.1 (p. 4) provides additional
details of the various releases of the Berkeley networking code.

This book is intended for anyone wishing to understand how the TCP/IP protocols are implemented:
programmers writing network applications, system administrators responsible for maintaining
computer systems and networks utilizing TCP/IP, and any programmer interested in understanding
how a large body of nontrivial code fits into a real operating system.
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Organization of the Book

The following figure shows the various protocols and subsystems that are covered. The italic numbers
by each box indicate the chapters in which that topic is described.

Chap. 2 7 15,16, 17 22
layer
24 25 26
23 27,28, 29 30 37
UDP TCP ‘ raw IP
sockets

18,19, 20 IP multicast| 14
tﬂuﬁl‘lg \ / rOUtmg
—_—
Hl ICMP 1P ?(}3]3 IGMP 13

21 ]
ARP D_ata 3,45 BPF 31
Link

media

We take a bottom-up approach to the TCP/IP protocol suite, starting at the data-link layer, then the
network layer (IP, ICMP, IGMP, IP routing, and multicast routing), followed by the socket layer, and
finishing with the transport layer (UDP, TCP, and raw IP).
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Intended Audience

This book assumes a basic understanding of how the TCP/IP protocols work. Readers unfamiliar with
TCP/IP should consult the first volume in this series, [Stevens 1994], for a thorough description of the
TCP/IP protocol suite. This earlier volume is referred to throughout the current text as Volume 1. The

current text also assumes a basic understanding of operating system principles.

We describe the implementation of the protocols using a data-structures approach. That is, in addition
to the source code presentation, each chapter contains pictures and descriptions of the data structures
used and maintained by the source code. We show how these data structures fit into the other data
structures used by TCP/IP and the kernel. Heavy use is made of diagrams throughout the text—there
are over 250 diagrams.

This data-structures approach allows readers to use the book in various ways. Those interested in all
the implementation details can read the entire text from start to finish, following through all the source
code. Others might want to understand how the protocols are implemented by understanding all the
data structures and reading all the text, but not following through all the source code.

We anticipate that many readers are interested in specific portions of the book and will want to go
directly to those chapters. Therefore many forward and backward references are provided throughout
the text, along with a thorough index, to allow individual chapters to be studied by themselves. The
inside back covers contain an alphabetical cross-reference of all the functions and macros described in
the book and the starting page number of the description. Exercises are provided at the end of the
chapters; most solutions are in Appendix A to maximize the usefulness of the text as a self-study
reference.
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Source Code Copyright

All of the source code presented in this book, other than Figures 1.2 and 8.27, is from the 4.4BSD-Lite
distribution. This software is publicly available through many sources (Appendix B).

All of this source code contains the following copyright notice

/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
* The Regents of the University of California. All

rights reserved.

*

* Redistribution and use in source and binary forms, with
or without

* modification, are permitted provided that the following
conditions

* are met:

* 1. Redistributions of source code must retain the above
copyright

* notice, this list of conditions and the following
disclaimer.

* 2. Redistributions in binary form must reproduce the
above copyright

* notice, this list of conditions and the following
disclaimer in the
* documentation and/or other materials provided with

the distribution.
* 3. All advertising materials mentioning features or use
of this software

* must display the following acknowledgement:

* This product includes software developed by the
University of

* California, Berkeley and its contributors.

* 4. Neither the name of the University nor the names of
its contributors

* may be used to endorse or promote products derived
from this software
* without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND
CONTRIBUTORS "~ "AS IS'' AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE

* ARE DISCLAIMED. 1IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS
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* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF

* SUCH DAMAGE.

*/
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Chapter 1. Introduction

1.1. Introduction

This chapter provides an introduction to the Berkeley networking code. We start with a description of
the source code presentation and the various typographical conventions used throughout the text. A
quick history of the various releases of the code then lets us see where the source code shown in this
book fits in. This is followed by a description of the two predominant programming interfaces used
under both Unix and non-Unix systems to write programs that use the TCP/IP protocols.

We then show a simple user program that sends a UDP datagram to the daytime server on another host
on the local area network, causing the server to return a UDP datagram with the current time and date
on the server as a string of ASCII text. We follow the datagram sent by the process all the way down
the protocol stack to the device driver, and then follow the reply received from server all the way up
the protocol stack to the process. This trivial example lets us introduce many of the kernel data
structures and concepts that are described in detail in later chapters.

The chapter finishes with a look at the organization of the source code that is presented in the book
and a review of where the networking code fits in the overall organization.

1.2. Source Code Presentation

Presenting 15,000 lines of source code, regardless of the topic, is a challenge in itself. The following
format is used for all the source code in the text:

tcp subr.c

381 void
382 tcp quench (inp, errno)
383 struct inpcb *inp;

384 int errno;

385 {

386 struct tcpcb *tp = intotcpcb (inp);
387 if (tp)

388 tp->snd_cwnd = tp->t maxseg;
389 }

Set congestion window to one segment

387-388

This is the tcp _quench function from the file tcp subr.c. These source filenames refer to files
in the 4.4BSD-Lite distribution, which we describe in Section 1.13. Each nonblank line is numbered.
The text describing portions of the code begins with the starting and ending line numbers in the left
margin, as shown with this paragraph. Sometimes the paragraph is preceded by a short descriptive
heading, providing a summary statement of the code being described.

The source code has been left as is from the 4.4BSD-Lite distribution, including occasional bugs,
which we note and discuss when encountered, and occasional editorial comments from the original
authors. The code has been run through the GNU Indent program to provide consistency in
appearance. The tab stops have been set to four-column boundaries to allow the lines to fit on a page.
Some #1ifdef statements and their corresponding #endi f have been removed when the constant is



always defined (e.g., GATEWAY and MROUTING, since we assume the system is operating as a router
and as a multicast router). All register specifiers have been removed. Sometimes a comment has
been added and typographical errors in the comments have been fixed, but otherwise the code has
been left alone.

The functions vary in size from a few lines tcp quench (shown earlier) to tcp input, which is
the biggest at 1100 lines. Functions that exceed about 40 lines are normally broken into pieces, which
are shown one after the other. Every attempt is made to place the code and its accompanying
description on the same page or on facing pages, but this isn't always possible without wasting a large
amount of paper.

Many cross-references are provided to other functions that are described in the text. To avoid
appending both a figure number and a page number to each reference, the inside back covers contain
an alphabetical cross-reference of all the functions and macros described in the book, and the starting
page number of the description. Since the source code in the book is taken from the publicly available
4.4BSD-Lite release, you can easily obtain a copy: Appendix B details various ways. Sometimes it
helps to have an on-line copy to search through [e.g., with the Unix grep (1) program] as you follow
the text.

Each chapter that describes a source code module normally begins with a listing of the source files
being described, followed by the global variables, the relevant statistics maintained by the code, some
sample statistics from an actual system, and finally the SNMP variables related to the protocol being
described. The global variables are often defined across various source files and headers, so we collect
them in one table for easy reference. Showing all the statistics at this point simplifies the later
discussion of the code when the statistics are updated. Chapter 25 of Volume 1 provides all the details
on SNMP. Our interest in this text is in the information maintained by the TCP/IP routines in the
kernel to support an SNMP agent running on the system.

Typographical Conventions

In the figures throughout the text we use a constant-width font for variable names and the names of
structure members (m_next), a slanted constant-width font for names that are defined constants
(NULL) or constant values (512), and a bold constant-width font with braces for structure names
(mbuf { }). Here is an example:

mbuf{}
m next NULL
m len 512

In tables we use a constant-width font for variable names and the names of structure members, and the
slanted constant-width font for the names of defined constants. Here is an example:

m_flags Description

M_BCAST sent/received as link-level broadcast

We normally show all #define symbols this way. We show the value of the symbol if necessary (the
value of M_BCAST is irrelevant) and sort the symbols alphabetically, unless some other ordering
makes sense.

Throughout the text we'll use indented, parenthetical notes such as this to describe
historical points or implementation minutae.

2




We refer to Unix commands using the name of the command followed by a number in parentheses, as
in grep (1) . The number in parentheses is the section number in the 4.4BSD manual of the "manual
page" for the command, where additional information can be located.

1.3. History

This book describes the common reference implementation of TCP/IP from the Computer Systems
Research Group at the University of California at Berkeley. Historically this has been distributed with
the 4.x BSD system (Berkeley Software Distribution) and with the "BSD Networking Releases." This
source code has been the starting point for many other implementations, both for Unix and non-Unix
operating systems.

Figure 1.1 shows a chronology of the various BSD releases, indicating the important TCP/IP features.
The releases shown on the left side are publicly available source code releases containing all of the
networking code: the protocols themselves, the kernel routines for the networking interface, and many
of the applications and utilities (such as Telnet and FTP).

Figure 1.1. Various BSD releases with important TCP/IP features.

4.2BSD (1983)
first widely available
release of TCP/IP

i

4.3BSD (1986)

TCP performance improvements

'

4.3BS5D Tahoe (1988)

slow start,
congestion avoidance,
// fast retransmit
BSD Networking Software ¢
Release 1.0 (1989): Net/1
4.3BSD Reno (1990)
fast recovery,
TCP header prediction,
// SLIP header compression,
routing table changes
BSD Networking Software ¢
Release 2.0 {1991): Net/2

4.4BSD (1993)

multicasting,
// long fat pipe modifications

4.4BSD-Lite (1994)
referred to in text as Net/3



Although the official name of the software described in this text is the 4.4BSD-Lite distribution, we'll
refer to it simply as Net/3.

While the source code is distributed by U. C. Berkeley and is called the Berkeley Software
Distribution, the TCP/IP code is really the merger and consolidation of the works of various
researchers, both at Berkeley and at other locations.

Throughout the text we'll use the term Berkeley-derived implementation to refer to vendor
implementations such as SunOS 4.x, System V Release 4 (SVR4), and AIX 3.2, whose TCP/IP code
was originally developed from the Berkeley sources. These implementations have much in common,
often including the same bugs!

Not shown in Figure 1.1 is that the first release with the Berkeley networking code
was actually 4.1cBSD in 1982. 4.2BSD, however, was the widely released version in
1983.

BSD releases prior to 4.1cBSD used a TCP/IP implementation developed at Bolt
Beranek and Newman (BBN) by Rob Gurwitz and Jack Haverty. Chapter 18 of
[Salus 1994] provides additional details on the incorporation of the BBN code into
4.2BSD. Another influence on the Berkeley TCP/IP code was the TCP/IP
implementation done by Mike Muuss at the Ballistics Research Lab for the PDP-11.

Limited documentation exists on the changes in the networking code from one
release to the next. [Karels and McKusick 1986] describe the changes from 4.2BSD
to 4.3BSD, and [Jacobson 1990d] describes the changes from 4.3BSD Tahoe to
4.3BSD Reno.

1.4. Application Programming Interfaces

Two popular application programming interfaces (APIs) for writing programs to use the Internet
protocols are sockets and TLI (Transport Layer Interface). The former is sometimes called Berkeley
sockets, since it was widely released with the 4.2BSD system (Figure 1.1). It has, however, been
ported to many non-BSD Unix systems and many non-Unix systems. The latter, originally developed
by AT&T, is sometimes called X77 (X/Open Transport Interface) in recognition of the work done by
X/Open, an international group of computer vendors who produce their own set of standards. XTI is
effectively a superset of TLI.

This is not a programming text, but we describe the sockets interface since sockets are used by
applications to access TCP/IP in Net/3 (and in all other BSD releases). The sockets interface has also
been implemented on a wide variety of non-Unix systems. The programming details for both sockets
and TLI are available in [Stevens 1990].

System V Release 4 (SVR4) also provides a sockets API for applications to use, although the
implementation differs from what we present in this text. Sockets in SVR4 are based on the "streams"
subsystem that is described in [Rago 1993].

1.5. Example Program

We'll use the simple C program shown in Figure 1.2 to introduce many features of the BSD
networking implementation in this chapter.



Figure 1.2. Example program: send a datagram to the UDP daytime server and read a

response.
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14 main()
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struct sockaddr in serv:
buff [BUFFSIZE] ;
sockfd, n;

char
ing

/* arbicrary aslze */

if (isockfd = socket (PF_INET, SOCK_DGRAM, 01) < 0O
err_sys{"socket error”);

bzero [ (char *)
serv.s5in_family = AF_INET;

serv.5in_addr.s_addr =

if {(sendto(sockEid,

buff,

&serv, sizeof({serv));

inet_addr("140.252.1.32");
Serv.sin_port = htons(13)1;

BUFFSIZE, 0,
(struct sockaddr *) &serv, zireof(serv))

err_sys(" gendto error™);

if ((m

exic (0);

recvirom(zockfd, buff, BUFFSIZE, 0,

istruct gockaddr *) NULL, (int *) NULL)) =< 2)
err_sys( "recvirom erxor®);

buff[m - 2] = 0;

printf{"%s'n", buff);

/* null cerminace */f

and date on the secver.

= BUFFSIZE])

Create a datagram socket

19-20

socket creates a UDP socket and returns a descriptor to the process, which is stored in the variable
sockfd. The error-handling function err sys is shown in Appendix B.2 of [Stevens 1992]. It
accepts any number of arguments, formats them using vsprint£, prints the Unix error message
corresponding to the errno value from the system call, and then terminates the process.

We've now used the term socket in three different ways. (1) The API developed for

4.2BSD to allow programs to access the networking protocols is normally called the
sockets API or just the sockets interface. (2) socket is the name of a function in the
sockets API. (3) We refer to the end point created by the call to socket as a socket,
as in the comment "create a datagram socket."

Unfortunately, there are still more uses of the term socket. (4) The return value from
the socket function is called a socket descriptor or just a socket. (5) The Berkeley
implementation of the networking protocols within the kernel is called the sockets
implementation, compared to the System V streams implementation, for example. (6)

5



The combination of an IP address and a port number is often called a socket, and a
pair of IP addresses and port numbers is called a socket pair. Fortunately, it is usually
obvious from the discussion what the term socket refers to.

Fill in sockaddr_in structure with server's address
21-24

An Internet socket address structure (sockaddr_in) is filled in with the IP address (140.252.1.32)
and port number (13) of the daytime server. Port number 13 is the standard Internet daytime server,
provided by most TCP/IP implementations [Stevens 1994, Fig. 1.9]. Our choice of the server host is
arbitrary—we just picked a local host (Figure 1.17) that provides the service.

The function inet addr takes an ASCII character string representing a dotted-decimal 1P address
and converts it into a 32-bit binary integer in the network byte order. (The network byte order for the
Internet protocol suite is big endian. [Stevens 1990, Chap. 4] discusses host and network byte order,
and little versus big endian.) The function htons takes a short integer in the host byte order (which
could be little endian or big endian) and converts it into the network byte order (big endian). On a
system such as a Sparc, which uses big endian format for integers, htons is typically a macro that
does nothing. In BSD/386, however, on the little endian 80386, htons can be either a macro or a
function that swaps the 2 bytes in a 16-bit integer.

Send datagram to server

25-27

The program then calls sendto, which sends a 150-byte datagram to the server. The contents of the
150-byte buffer are indeterminate since it is an uninitialized array allocated on the run-time stack, but
that's OK for this example because the server never looks at the contents of the datagram that it

receives. When the server receives a datagram it sends a reply to the client. The reply contains the
current time and date on the server in a human-readable format.

Our choice of 150 bytes for the client's datagram is arbitrary. We purposely pick a value greater than
100 and less than 208 to show the use of an mbuf chain later in this chapter. We also want a value less
than 1472 to avoid fragmentation on an Ethernet.

Read datagram returned by server
28-32

The program reads the datagram that the server sends back by calling recvfrom. Unix servers
typically send back a 26-byte string of the form

Sat Dec 11 11:28:05 1993\er\n

where \er is an ASCII carriage return and \en is an ASCII linefeed. Our program overwrites the
carriage return with a null byte and calls printf to output the result.

We go into lots of detail about various parts of this example in this and later chapters as we examine
the implementation of the functions socket, sendto, and recvfrom.



1.6. System Calls and Library Functions

All operating systems provide service points through which programs request services from the
kernel. All variants of Unix provide a well-defined, limited number of kernel entry points known as
system calls. We cannot change the system calls unless we have the kernel source code. Unix Version
7 provided about 50 system calls, 4.4BSD provides about 135, and SVR4 has around 120.

The system call interface is documented in Section 2 of the Unix Programmer's Manual. Its definition
is in the C language, regardless of how system calls are invoked on any given system.

The Unix technique is for each system call to have a function of the same name in the standard C
library. An application calls this function, using the standard C calling sequence. This function then
invokes the appropriate kernel service, using whatever technique is required on the system. For
example, the function may put one or more of the C arguments into general registers and then execute
some machine instruction that generates a software interrupt into the kernel. For our purposes, we can
consider the system calls to be C functions.

Section 3 of the Unix Programmer's Manual defines the general purpose functions available to
programmers. These functions are not entry points into the kernel, although they may invoke one or
more of the kernel's system calls. For example, the printf function may invoke the write system
call to perform the output, but the functions strcpy (copy a string) and atoi (convert ASCII to
integer) don't involve the operating system at all.

From an implementor's point of view, the distinction between a system call and a library function is
fundamental. From a user's perspective, however, the difference is not as critical. For example, if we
run Figure 1.2 under 4.4BSD, when the program calls the three functions socket, sendto, and
recvfrom, each ends up calling a function of the same name within the kernel. We show the BSD
kernel implementation of these three system calls later in the text.

If we run the program under SVR4, where the socket functions are in a user library that calls the
"streams" subsystem, the interaction of these three functions with the kernel is completely different.
Under SVR4 the call to socket ends up invoking the kernel's open system call for the file
/dev/udp and then pushes the streams module sockmod onto the resulting stream. The call to
sendto results in a putmsg system call, and the call to recvfrom results in a getmsg system call.
These SVR4 details are not critical in this text. We want to point out only that the implementation can
be totally different while providing the same API to the application.

This difference in implementation technique also accounts for the manual page for the socket
function appearing in Section 2 of the 4.4BSD manual but in Section 3n (the letter # stands for the
networking subsection of Section 3) of the SVR4 manuals.

Finally, the implementation technique can change from one release to the next. For example, in Net/1
send and sendto were implemented as separate system calls within the kernel. In Net/3, however,
send is a library function that calls sendto, which is a system call:

send(int s, char *msg, int len, int flags)
{

return (sendto (s, msg, len, flags, (struct sockaddr *) NULL,
0)):;
}

The advantage in implementing send as a library function that just calls sendto is a reduction in the
number of system calls and in the amount of code within the kernel. The disadvantage is the additional
overhead of one more function call for the process that calls send.



Since this text describes the Berkeley implementation of TCP/IP, most of the functions called by the
process socket, ( bind, connect, etc.)are implemented directly in the kernel as system calls.

1.7. Network Implementation Overview

Net/3 provides a general purpose infrastructure capable of simultaneously supporting multiple
communication protocols. Indeed, 4.4BSD supports four distinct communication protocol families:

1.
2.

TCP/IP (the Internet protocol suite), the topic of this book.

XNS (Xerox Network Systems), a protocol suite that is similar to TCP/IP; it was popular in
the mid-1980s for connecting Xerox hardware (such as printers and file servers), often using
an Ethernet. Although the code is still distributed with Net/3, few people use this protocol
suite today, and many vendors who use the Berkeley TCP/IP code remove the XNS code (so
they don't have to support it).

The OSI protocols [Rose 1990; Piscitello and Chapin 1993]. These protocols were designed
during the 1980s as the ultimate in open-systems technology, to replace all other
communication protocols. Their appeal waned during the early 1990s, and as of this writing
their use in real networks is minimal. Their place in history is still to be determined.

The Unix domain protocols. These do not form a true protocol suite in the sense of
communication protocols used to exchange information between different systems, but are
provided as a form of interprocess communication (IPC).

The advantage in using the Unix domain protocols for IPC between two processes on the
same host, versus other forms of IPC such as System V message queues [Stevens 1990], is
that the Unix domain protocols are accessed using the same API (sockets) as are the other
three communication protocols. Message queues, on the other hand, and most other forms of
IPC, have an API that is completely different from both sockets and TLI. Having IPC
between two processes on the same host use the networking API makes it easy to migrate a
client-server application from one host to many hosts. Two different protocols are provided in
the Unix domain—a reliable, connection-oriented, byte-stream protocol that looks like TCP,
and an unreliable, connectionless, datagram protocol that looks like UDP.

Although the Unix domain protocols can be used as a form of IPC between
two processes on the same host, these processes could also use TCP/IP to
communicate with each other. There is no requirement that processes
communicating using the Internet protocols reside on different hosts.

The networking code in the kernel is organized into three layers, as shown in Figure 1.3. On the right
side of this figure we note where the seven layers of the OSI reference model [Piscitello and Chapin
1993] fit in the BSD organization.



Figure 1.3. The general organization of networking code in Net/3.
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The socket layer is a protocol-independent interface to the protocol-dependent layer below.
All system calls start at the protocol-independent socket layer. For example, the protocol-
independent code in the socket layer for the bind system call comprises a few dozen lines of
code: these verify that the first argument is a valid socket descriptor and that the second
argument is a valid pointer in the process. The protocol-dependent code in the layer below is
then called, which might comprise hundreds of lines of code.

The protocol layer contains the implementation of the four protocol families that we
mentioned earlier (TCP/IP, XNS, OSI, and Unix domain). Each protocol suite may have its
own internal structure, which we don't show in Figure 1.3. For example, in the Internet
protocol suite, IP is the lowest layer (the network layer) with the two transport layers (TCP
and UDP) above IP.

The interface layer contains the device drivers that communicate with the network devices.

1.8. Descriptors

Figure 1.2 begins with a call to socket, specifying the type of socket desired. The combination of
the Internet protocol family (PF_INET) and a datagram socket (SOCK DGRAM) gives a socket whose
protocol is UDP.

The return value from socket is a descriptor that shares all the properties of other Unix descriptors:
read and write can be called for the descriptor, you can dup it, it is shared by the parent and child
after a call to fork, its properties can be modified by calling fcntl, it can be closed by calling
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close, and so on. We see in our example that the socket descriptor is the first argument to both the
sendto and recvifrom functions. When our program terminates (by calling exit), all open
descriptors including the socket descriptor are closed by the kernel.

We now introduce the data structures that are created by the kernel when the process calls socket.
We describe these data structures in more detail in later chapters.

Everything starts with the process table entry for the process. One of these exists for each process
during its lifetime.

A descriptor is an index into an array within the process table entry for the process. This array entry
points to an open file table structure, which in turn points to an i-node or v-node structure that
describes the file. Figure 1.4 summarizes this relationship.

Figure 1.4. Fundamental relationship between kernel data structures starting with a

descriptor.
vonoda{}
file{}
proc(} —
fdi
. socket{}
fdj T, file{}

In this figure we also show a descriptor that refers to a socket, which is the focus of this text. We place
the notation proc{} above the process table entry, since its definition in C is

struct proc {
}

and we use this notation for structures in our figures throughout the text.

[Stevens 1992, Sec. 3.10] shows how the relationships between the descriptor, file table structure, and
i-node or v-node change as the process calls dup and fork. The relationships between these three
data structures exists in all versions of Unix, although the details change with different
implementations. Our interest in this text is with the socket structure and the Internet-specific data
structures that it points to. But we need to understand how a descriptor leads to a socket structure,
since the socket system calls start with a descriptor.

Figure 1.5 shows more details of the Net/3 data structures for our example program, if the program is
executed as

10



Figure 1.5. Kernel data structures after call to socket in example program.
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without redirecting standard input (descriptor 0), standard output (descriptor 1), or standard error
(descriptor 2). In this example, descriptors 0, 1, and 2 are connected to our terminal, and the lowest-
numbered unused descriptor is 3 when socket is called.

When a process executes a system call such as socket, the kernel has access to the process table
structure. The entry p_£d in this structure points to the £iledesc structure for the process. There are
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two members of this structure that interest us now: £d_ofileflags is a pointer to an array of
characters (the per-descriptor flags for each descriptor), and £d_ofiles is a pointer to an array of
pointers to file table structures. The per-descriptor flags are 8 bits wide since only 2 bits can be set for
any descriptor: the close-on-exec flag and the mapped-from-device flag. We show all these flags as 0.

We purposely call this section "Descriptors" and not "File Descriptors" since Unix
descriptors can refer to lots of things other than files: sockets, pipes, directories,
devices, and so on. Nevertheless, much of Unix literature uses the adjective file when
talking about descriptors, which is an unnecessary qualification. Here the kernel data
structure is called filedesc{} even though we're about to describe socket
descriptors. We'll use the unqualified term descriptor whenever possible.

The data structure pointed to by the fd_ofiles entry is shownas *file{} [] since it is an array of
pointers to £ile structures. The index into this array and the array of descriptor flags is the
nonnegative descriptor itself: 0, 1, 2, and so on. In Figure 1.5 we show the entries for descriptors 0, 1,
and 2 pointing to the same f1i1e structure at the bottom of the figure (since all three descriptors refer
to our terminal). The entry for descriptor 3 points to a different £ile structure for our socket
descriptor.

The £ type member of the £1i1le structure specifies the descriptor type as either DTYPE SOCKET or
DTYPE VNODE. V-nodes are a general mechanism that allows the kernel to support different types of
filesystems—a disk filesystem, a network filesystem (such as NFS), a filesystem on a CD-ROM, a
memory-based filesystem, and so on. Our interest in this text is not with v-nodes, since TCP/IP
sockets always have a type of DTYPE SOCKET.

The £ data member of the £i1le structure points to either a socket structure or a vnode structure,
depending on the type of descriptor. The £ ops member points to a vector of five function pointers.
These function pointers are used by the read, readv, write, writev, ioctl, select,
and close system calls, since these system calls work with either a socket descriptor or a nonsocket
descriptor. Rather than look at the £ type value each time one of these system calls is invoked and
then jump accordingly, the implementors chose always to jump indirectly through the corresponding
entry in the £ileops structure instead.

Notationally we use a fixed-width font (fo read) to show the name of a structure member and a
slanted fixed-width font (soo read) to show the contents of a structure member. Also note that
sometimes we show the pointer to a structure arriving at the top left corner (e.g., the filedesc
structure) and sometimes at the top right corner (e.g., both £ile structures and both fileops
structures). This is to simplify the figures.

Next we come to the socket structure that is pointed to by the £i1e structure when the descriptor
type is DTYPE SOCKET. In our example, the socket type (SOCK DGRAM for a datagram socket) is
stored in the so_type member. An Internet protocol control block (PCB) is also allocated: an inpcb
structure. The so_pcb member of the socket structure points to the inpcb, and the inp socket
member of the inpcb structure points to the socket structure. Each points to the other because the
activity for a given socket can occur from two directions: "above" or "below."

1. When the process executes a system call, such as sendto, the kernel starts with the
descriptor value and uses £d_ofiles to index into the vector of £ile structure pointers,
ending up with the £1ile structure for the descriptor. The £1ile structure points to the
socket structure, which points to the inpcb structure.

2. When a UDP datagram arrives on a network interface, the kernel searches through all the
UDP protocol control blocks to find the appropriate one, minimally based on the destination
UDP port number and perhaps the destination IP address, source IP address, and source port
numbers too. Once the inpcb structure is located, the kernel finds the corresponding
socket structure through the inp socket pointer.
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The members inp faddr and inp laddr contain the foreign and local IP addresses, and the
members inp fport and inp lport contain the foreign and local port numbers. The combination
of the local IP address and the local port number is often called a socket, as is the combination of the
foreign IP address and the foreign port number.

We show another inpcb structure with the name udb on the left in Figure 1.5. This is a global
structure that is the head of a linked list of all UDP PCBs. We show the two members inp next and
inp prev that form a doubly linked circular list of all UDP PCBs. For notational simplicity in the
figure, we show two parallel horizontal arrows for the two links instead of trying to have the heads of
the arrows going to the top corners of the PCBs. The inp prev member of the inpcb structure on
the right points to the udb structure, not the inp prev member of that structure. The dotted arrows
from udb.inp prev and the inp next member of the other PCB indicate that there may be other
PCBs on the doubly linked list that we don't show.

We've looked at many kernel data structures in this section, most of which are described further in
later chapters. The key points to understand now are:

1. The call to socket by our process ends up allocating the lowest unused descriptor (3 in our
example). This descriptor is used by the process in all subsequent system calls that refer to
this socket.

2. The following kernel structures are allocated and linked together: a £i1e structure of type
DTYPE SOCKET, a socket structure, and an inpcb structure. Lots of initialization is
performed on these structures that we don't show: the £i1le structure is marked for read and
write (since the call to socket always returns a descriptor that can be read or written), the
default sizes of the input and output buffers are set in the socket structure, and so on.

3. We showed nonsocket descriptors for our standard input, output, and error to show that a//
descriptors end up at a £1ile structure, and it is from that point on that differences appear
between socket descriptors and other descriptors.

1.9. Mbufs (Memory Buffers) and Output Processing

A fundamental concept in the design of the Berkeley networking code is the memory buffer, called an
mbuf, used throughout the networking code to hold various pieces of information. Our simple example
(Figure 1.2) lets us examine some typical uses of mbufs. In Chapter 2 we describe mbufs in more
detail.

Mbuf Containing Socket Address Structure

In the call to sendto, the fifth argument points to an Internet socket address structure (named serv)
and the sixth argument specifies its length (which we'll see later is 16 bytes). One of the first things
done by the socket layer for this system call is to verify that these arguments are valid (i.e., the pointer
points to a piece of memory in the address space of the process) and then copy the socket address
structure into an mbuf. Figure 1.6 shows the resulting mbuf.
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Figure 1.6. Mbuf containing destination address for sendto.

mbuf {}
A m_next NULL
m_nextpkt NULL
20 bj-'tES m_len 1&
— m_data
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m_£flags 0

16-byte sockaddr_in{}
with destination IP address
125 bytes and port number

e

The first 20 bytes of the mbuf is a header containing information about the mbuf. This 20-byte header
contains four 4-byte fields and two 2-byte fields. The total size of the mbuf is 128 bytes.

Mbufs can be linked together using the m next and m nextpkt members, as we'll see shortly. Both
are null pointers in this example, which is a stand-alone mbuf.

The m data member points to the data in the mbuf and the m_1en member specifies its length. For
this example, m_data points to the first byte of data in the mbuf (the byte immediately following the
mbuf header). The final 92 bytes of the mbuf data area (108-16) are unused (the shaded portion of
Figure 1.6).

The m_type member specifies the type of data contained in the mbuf, which for this example is
MT SONAME (socket name). The final member in the header, m _flags, is zero in this example.

Mbuf Containing Data

Continuing our example, the socket layer copies the data buffer specified in the call to sendto into
one or more mbufs. The second argument to sendto specifies the start of the data buffer (buf ), and
the third argument is its size in bytes (150). Figure 1.7 shows how two mbufs hold the 150 bytes of
data.
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Figure 1.7. Two mbufs holding 150 bytes of data.
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This arrangement is called an mbuf chain. The m_next member in each mbuf links together all the
mbufs in a chain.

The next change we see is the addition of two members, m pkthdr.len andm pkthdr.rcvif, to
the mbuf header in the first mbuf of the chain. These two members comprise the packet header and
are used only in the first mbuf of a chain. The m _flags member contains the value M PKTHDR to
indicate that this mbuf contains a packet header. The 1en member of the packet header structure
contains the total length of the mbuf chain (150 in this example), and the next member, rcvif, we'll
see later contains a pointer to the received interface structure for received packets.

Since mbufs are always 128 bytes, providing 100 bytes of data storage in the first mbuf on the chain
and 108 bytes of storage in all subsequent mbufs on the chain, two mbufs are needed to store 150
bytes of data. We'll see later that when the amount of data exceeds 208 bytes, instead of using three or
more mbufs, a different technique is used—a larger buffer, typically 1024 or 2048 bytes, called a
cluster is used.

One reason for maintaining a packet header with the total length in the first mbuf on the chain is to
avoid having to go through all the mbufs on the chain to sum their m_1en members when the total
length is needed.

Prepending IP and UDP Headers

After the socket layer copies the destination socket address structure into an mbuf (Figure 1.6) and the
data into an mbuf chain (Figure 1.7), the protocol layer corresponding to the socket descriptor (a UDP

15



socket) is called. Specifically, the UDP output routine is called and pointers to the mbufs that we've
examined are passed as arguments. This routine needs to prepend an IP header and a UDP header in
front of the 150 bytes of data, fill in the headers, and pass the mbufs to the IP output routine.

The way that data is prepended to the mbuf chain in Figure 1.7 is to allocate another mbuf, make it the
front of the chain, and copy the packet header from the mbuf with 100 bytes of data into the new
mbuf. This gives us the three mbufs shown in Figure 1.8.

Figure 1.8. Mbuf chain from Figure 1.7 with another mbuf for IP and UDP headers

prepended.
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The IP header and UDP header are stored at the end of the new mbuf that becomes the head of the
chain. This allows for any lower-layer protocols (e.g., the interface layer) to prepend its headers in
front of the IP header if necessary, without having to copy the IP and UDP headers. The m data
pointer in the first mbuf points to the start of these two headers, and m_len is 28. Future headers that
fit in the 72 bytes of unused space between the packet header and the IP header can be prepended
before the IP header by adjusting the m_data pointer and the m_1en accordingly. Shortly we'll see
that the Ethernet header is built here in this fashion.

Notice that the packet header has been moved from the mbuf with 100 bytes of data into the new
mbuf. The packet header must always be in the first mbuf on the chain. To accommodate this
movement of the packet header, the M PKTHDR flag is set in the first mbuf and cleared in the second
mbuf. The space previously occupied by the packet header in the second mbuf is now unused. Finally,
the length member in the packet header is incremented by 28 bytes to become 178.

The UDP output routine then fills in the UDP header and as much of the IP header as it can. For
example, the destination address in the IP header can be set, but the IP checksum will be left for the IP
output routine to calculate and store.

The UDP checksum is calculated and stored in the UDP header. Notice that this requires a complete
pass of the 150 bytes of data stored in the mbuf chain. So far the kernel has made two complete passes
of the 150 bytes of user data: once to copy the data from the user's buffer into the kernel's mbufs, and
now to calculate the UDP checksum. Extra passes over the data can degrade the protocol's
performance, and in later chapters we describe alternative implementation techniques that avoid
unnecessary passes.
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At this point the UDP output routine calls the IP output routine, passing a pointer to the mbuf chain
for IP to output.

IP Output

The IP output routine fills in the remaining fields in the IP header including the IP checksum,
determines the outgoing interface to which the datagram should be given (this is the IP routing
function), fragments the IP datagram if necessary, and calls the interface output function.

Assuming the outgoing interface is an Ethernet, a general-purpose Ethernet output function is called,
again with a pointer to the mbuf chain as an argument.

Ethernet Output

The first function of the Ethernet output function is to convert the 32-bit IP address into its
corresponding 48-bit Ethernet address. This is done using ARP (Address Resolution Protocol) and
may involve sending an ARP request on the Ethernet and waiting for an ARP reply. While this takes
place, the mbuf chain to be output is held, waiting for the reply.

The Ethernet output routine then prepends a 14-byte Ethernet header to the first mbuf in the chain,
immediately before the IP header (Figure 1.8). This contains the 6-byte Ethernet destination address,
6-byte Ethernet source address, and 2-byte Ethernet frame type.

The mbuf chain is then added to the end of the output queue for the interface. If the interface is not
currently busy, the interface's "start output" routine is called directly. If the interface is busy, its output
routine will process the new mbuf on its queue when it is finished with the buffers already on its
output queue.

When the interface processes an mbuf that's on its output queue, it copies the data to its transmit buffer
and initiates the output. In our example, 192 bytes are copied to the transmit buffer: the 14-byte
Ethernet header, 20-byte IP header, 8-byte UDP header, and 150 bytes of user data. This is the third
complete pass of the data by the kernel. Once the data is copied from the mbuf chain into the device's
transmit buffer, the mbuf chain is released by the Ethernet device driver. The three mbufs are put back
into the kernel's pool of free mbufs.

Summary of UDP Output

In Figure 1.9 we give an overview of the processing that takes place when a process calls sendto to
transmit a single UDP datagram. The relationship of the processing that we've described to the three
layers of kernel code (Figure 1.3) is also shown.
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Figure 1.9. Processing performed by the three layers for simple UDP output.
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Function calls pass control from the socket layer to the UDP output routine, to the IP output routine,
and then to the Ethernet output routine. Each function call passes a pointer to the mbuf chain to be
output. At the lowest layer, the device driver, the mbuf chain is placed on the device's output queue
and the device is started, if necessary. The function calls return in reverse order of their call, and
eventually the system call returns to the process. Notice that there is no queueing of the UDP data
until it arrives at the device driver. The higher layers just prepend their header and pass the mbuf to
the next lower layer.

At this point our program calls recvfrom to read the server's reply. Since the input queue for the
specified socket is empty (assuming the reply has not been received yet), the process is put to sleep.

1.10. Input Processing

Input processing is different from the output processing just described because the input is
asynchronous. That is, the reception of an input packet is triggered by a receive-complete interrupt to
the Ethernet device driver, not by a system call issued by the process. The kernel handles this device
interrupt and schedules the device driver to run.

Ethernet Input

The Ethernet device driver processes the interrupt and, assuming it signifies a normal receive-
complete condition, the data bytes are read from the device into an mbuf chain. In our example, 54
bytes of data are received and copied into a single mbuf: the 20-byte IP header, 8-byte UDP header,
and 26 bytes of data (the time and date on the server). Figure 1.10 shows the format of this mbuf.
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Figure 1.10. Single mbuf to hold input Ethernet data.
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This mbuf is a packet header (the M PKTHDR flag is set inm_flags) since it is the first mbuf of a
data record. The 1en member in the packet header contains the total length of data and the rcvif.
member contains a pointer to the interface structure corresponding to the received interface (Chapter
3). We see that the rcvi f member is used for received packets but not for output packets (Figures 1.7
and 1.8).

The first 16 bytes of the data portion of the mbuf are allocated for an interface layer header, but are
not used. Since the amount of data (54 bytes) fits in the remaining 84 bytes of the mbuf, the data is
stored in the mbulf itself.

The device driver passes the mbuf to a general Ethernet input routine which looks at the type field in
the Ethernet frame to determine which protocol layer should receive the packet. In this example, the
type field will specify an IP datagram, causing the mbuf to be added to the IP input queue.
Additionally, a software interrupt is scheduled to cause the IP input process routine to be executed.
The device's interrupt handling is then complete.

IP Input

IP input is asynchronous and is scheduled to run by a software interrupt. The software interrupt is set
by the interface layer when it receives an IP datagram on one of the system's interfaces. When the 1P
input routine executes it loops, processing each IP datagram on its input queue and returning when the
entire queue has been processed.
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The IP input routine processes each IP datagram that it receives. It verifies the IP header checksum,
processes any IP options, verifies that the datagram was delivered to the right host (by comparing the
destination IP address of the datagram with the host's IP addresses), and forwards the datagram if the
system was configured as a router and the datagram is destined for some other IP address. If the IP
datagram has reached its final destination, the protocol field in the IP header specifies which protocol's
input routine is called: ICMP, IGMP, TCP, or UDP. In our example, the UDP input routine is called to
process the UDP datagram.

UDP Input

The UDP input routine verifies the fields in the UDP header (the length and optional checksum) and
then determines whether or not a process should receive the datagram. In Chapter 23 we discuss
exactly how this test is made. A process can receive all datagrams destined to a specified UDP port, or
the process can tell the kernel to restrict the datagrams it receives based on the source and destination
IP addresses and source and destination port numbers.

In our example, the UDP input routine starts at the global variable udb (Figure 1.5) and goes through
the linked list of UDP protocol control blocks, looking for one with a local port number (inp lport)
that matches the destination port number of the received UDP datagram. This will be the PCB created
by our call to socket, and the inp_socket member of this PCB points to the corresponding
socket structure, allowing the received data to be queued for the correct socket.

In our example program we never specify the local port number for our application.
We'll see in Exercise 23.3 that a side effect of writing the first UDP datagram to a
socket that has not yet bound a local port number is the automatic assignment by the
kernel of a local port number (termed an ephemeral port) to that socket. That's how
the inp lport member of the PCB for our socket gets set to some nonzero value.

Since this UDP datagram is to be delivered to our process, the sender's IP address and UDP port
number are placed into an mbuf, and this mbuf and the data (26 bytes in our example) are appended to
the receive queue for the socket. Figure 1.11 shows the two mbufs that are appended to the socket's
receive queue.

Figure 1.11. Sender's address and data.
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Comparing the second mbuf on this chain (the one of type MT DATA) with the mbuf in Figure 1.10,
them lenandm pkthdr.len members have both been decremented by 28 (20 bytes for the IP
header and 8 for the UDP header) and the m_data pointer has been incremented by 28. This
effectively removes the IP and UDP headers, leaving only the 26 bytes of data to be appended to the
socket's receive queue.

The first mbuf in the chain contains a 16-byte Internet socket address structure with the sender's IP
address and UDP port number. Its type is MT SONAME, similar to the mbuf in Figure 1.6. This mbuf
is created by the socket layer to return this information to the calling process through the recvfrom
or recvmsg system calls. Even though there is room (16 bytes) in the second mbuf on this chain for
this socket address structure, it must be stored in its own mbuf since it has a different type
(MT_SONAME versus MT DATA).

The receiving process is then awakened. If the process is asleep waiting for data to arrive (which is the
scenario in our example), the process is marked as run-able for the kernel to schedule. A process can
also be notified of the arrival of data on a socket by the select system call or with the STGTO signal.

Process Input

Our process has been asleep in the kernel, blocked in its call to recvfrom, and the process now
wakes up. The 26 bytes of data appended to the socket's receive queue by the UDP layer (the received
datagram) are copied by the kernel from the mbuf into our program's buffer.

Notice that our program sets the fifth and sixth arguments to recvfrom to null pointers, telling the
system call that we're not interested in receiving the sender's IP address and UDP port number. This
causes the recvfrom system call to skip the first mbuf in the chain (Figure 1.11), returning only the
26 bytes of data in the second mbuf. The kernel's recvfrom code then releases the two mbufs in
Figure 1.11 and returns them to its pool of free mbufs.

1.11. Network Implementation Overview Revisited

Figure 1.12 summarizes the communication that takes place between the layers for both network
output and network input. It repeats Figure 1.3 considering only the Internet protocols and
emphasizing the communications between the layers.
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Figure 1.12. Communication between the layers for network input and output.
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The notations splnet and splimp are discussed in the next section.

We use the plural terms socket queues and interf